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RESULTS OF THE COMBINED APPLICATION OF BOUNDARY
LAYER AND PROFILE THEORY

Richard Eppler
B6lkow-Entwicklungen KG

Summary /247*

By means of recently developed methods of calculation for

boundary layer and profile theory, which have been published

elsewhere, it is possible to determine in a simple way profiles

with fixed characteristics of pressure distribution and to carry

out with them extensive boundary layer calculations. As the

results are more reliable compared to those of former ones, and as

they are more quickly available because of digital computers,

series of profiles can be studied systematically and a determina-

tion of profiles, which is analogous to the procedure in the wind

tunnel, is possible; these profiles result in an optimum solution

of certain studies within the theory. By giving examples of the

pressure rise curve after boundary layer transition, of the dis-

tribution of laminar portions on the suction and pressure sides

of the airfoil, and of the problem of high maximum lift, the

author explains the theoretical possibilities.

1. Introduction

The combined application of boundary layer and profile theory

took place already at an early date, chiefly starting, however,

from fixed profiles for which pressure distribution and boundary

layer were calculated. The calculations were expensive and

nearly always so uncertain that they had little practical value.

With advancing development of boundary layer theory, the

knowledge grew concerning the requirements for velocity dis-

tribution on profiles for a favorable development of the boundary

layer. This resulted in a reversal of problems in profile theory,

*Numbers in the margin indicate pagination in the foreign text.
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namely, to find profiles with specified characteristics of

velocity distribution. The studies resulted in the well-known

NACA laminar profiles that were destined to have great success.

It is true that the profiles which had been calculated only to a

limited extent did not by any means do justice to all problems;

in addition, the turbulent boundary layer and the profile also

had not been exhaustively dealt with.

In the meantime, more knowledge has been acquired regarding

the phenomena in the boundary layer, especially the turbulent

boundary layer, and today we are in possession of simpler methods

of calculation in the profile and boundary layer theory.

On top of this is the considerable reduction of expenses and

above all of calculating time by means of electronic computers,

so that it has become possible to calculate whole series of

profiles and from them to derive optimal solutions for the most

varied problems at only a fraction of the expense required for

wind-tunnel measurements or the construction of a wing. We will

report in the following on the purely theoretical methods of this

process. In the foreground of discussion will be the fact that

the theory actually offers these basic possibilities and the

aspect of how it works. So far, it is not possible to predict to

what extent we will be successful with experimental corroboration.

In any case, it will become clear that it will pay to devote some

experimental attention to the entire method, as by this means it

is possible under certain circumstances to get away altogether

from the customary method of selecting a profile from more or

less voluminous catalogs of data and to be able to calculate for

any application the one suitable profile. First steps in this

direction met with definite success, even though they possibly

seemed somewhat rash.
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2. Profile Theory, Method of Calculation /248

Airfoils,, the velocity distribution of which must have

specified characteristics, require special methods of calculation.

Due to the fact that in most cases certain characteristics of

velocity distribution are required at quite different angles of

incidence, as will be shown later in detail by means of examples,

the method of calculation should permit, as far as possible, the

introduction of conditions, or at least allow an easy way of

keeping track of velocity distribution at the most varied angles

of incidence.

The first and best-known procedure for this purpose was

offered by T. Theodorsen and served for calculating the well-known

NACA laminar airfoils [1]. It required, however, a very large

input of calculating effort and was only used for symmetrical

profiles. Cambered profiles were obtained by means of the

theory of approximation of the section with turbulence dis-

tribution. Certain errors had to be put up with which, on the

one hand, resulted from the theory of singularity itself, and on

the other hand, from its application to finite thick profiles.

In addition, the calculation of symmetrical profiles at the

leading edge was connected with difficulties. It was not possible

to attain complete accuracy at this location.

At a later date, profiles were calculated by J. Lighthill [2]

that were obtained, both cambered and symmetrical, by means of

conformal representation and in cases where it was possible to

specify exactly and meet the characteristics of velocity distribu-

tion. However, this method was suitable only for especially

simple analytical velocity specifications.

E. Truckenbrodt [31 presented a simple method of apppoxima-

tion based on singularity distribution for the solution of the

same problem which, however, was limited with respect to possi-

bilities of specification (for only one value of lift) and
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accuracy and which also presented difficulties working with

different angles of incidence. Consequently, another method was

developed [4] which also uses conformal representation and com-

bines the accuracy of Lighthill with general possibilities of

using desired numerical values and requires less numerical effort.

The possibilities of specified values offered by the new

method are made evident by the example in Fig. 1. An airfoil is

shown with its distribution of velocity for four different angles

of incidence. This

represents the typical

picture with which we

are familiar from experi-

--"12 5  ments and theory. With

SOberseite increasing angle of

incidence, velocity

increases on the upper

S ". surface and decreases on
0,6 - - I rseite the lower surface. The

c chiieflungsantei changes in each case are
c , - greatest in the vicinity

. -- of the leading edge and

o 0,2 0, 0,6 0,8 ,0 practically disappear at

the trailing edge. The

Fig. 1. Example for the profile cal- essential feature is
culating method. this: the representation

Key: a. Upper surface exhibits some peculiari-
b. Lower surface
c. Closing component ties at different angles

of incidence that can be

traced back to the

specified conditions. Those portions of the four velocity distribu-

tions which are decisive for fixing the profile have been drawn

with a heavy line in the figure. On the upper surface at an angle

of incidence of a = 4.90, velocity is constant over a wide range.

In the direction of the trailing edge, a certain decrease in
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velocity was specified, the form of which was given in relation

to constant velocity. Especially the total magnitude of U1 /U 0 of

the velocity decrease and the gradient U'/U can be specified at

the beginning. At a high angle of incidence of 12.250, velocity

in the vicinity of the leading edge is constant on the upper

surface. On the lower surface, velocity is constant in the

vicinity of the leading edge at the very small angle of incidence

of 2.450, while it is constant over a larger section at 9.80.

For the aft portion of the lower surface, the form of velocity

decrease is specified just as it is on the upper surface. In the

immediate vicinity of the trailing edge, still other changes in

velocity can be observed. In the first place, they effect con-

tinuity of velocity at the trailing edge, a condition that is a

must for the exact method of calculation, as otherwise a singularity

would occur. In the second place, a closure of the profile is

produced by these short sections. If the profile is very thick

shortly before it reaches the trailing edge, then a large rise

in pressure is required at the "closing component." Conversely,

it is possible to evaluate the fineness of the trailing edge by

means of the closing components that are calculated prior to the

actual profile, and if necessary, to affect its design by means

of changes in the layout and the required thickness of the closure.

The specified angles of incidence are always in reference to

the direction of zero lift. Therefore, the lift coefficients can

be calculated from them by means of

cA = 2rTna (1)

in which case n > 1 is a quantity which depends on the thickness

of the profile and can be approximated at a value equal to 1.

It is part of the calculating process but plays no decisive role

due to the fact that in the experiment, on account of the

boundary layer cushion, about all that is just above the value

of 1 is lost again.
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The method of calculation introduces the heavy-lined condi-

tions for velocity distribution in an exact manner into the

methodology of conformal representation. A singularity that

forms at the stagnation point was split off; also a second one

that occurs in the vicinity of the leading edge due to a sharp

angle or a big jump in the derivation of the speed variation.

Conformal representations that were used for a backward calcula-

tion of the distribution of velocities from the airfoil yielded

excellent agreement with specified values. Neither is there any /248

disturbing difference in a comparison with experimental pressure

distributions.

The calculating effort is comparable to that of Truckenbrodt

for the same number of calculated points. The main advantage of

the method lies in the exact calculation of the leading edge. A

comparison with profiles calculated in accordance with other

methods demonstrates the effect of the exact calculation. Figure 2

represents an example of a calculation which solves the known

problem of common laminar airfoils.

On the upper surface,

713, velocity is as follows: at

\<r a = 8.50 or in accordance with

, . (1) with n = 1.08 at cA = 1.02

it is constant up to x = 0.8;

on the lower surface at a =

= 3.50 or cA = 0.42, it is

10-- constant up to x = 0.6. In

10 the range between these two

0,4 -angles of incidence, velocity

increases on the upper and

0 lower surface over the corre-

sponding sections. The
Fig. 2. Airfoil STF 863-615 in
accordance with NACA 66 -618. boundary layer can be main-

tained in a laminar condition
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over these "laminar lengths," and in the polar diagram there can

be expected the well-known "laminar dip," a zone of low drag on

account of the laminar boundary layer. The limits of this

laminar dip are not absolutely identical with the angles of

incidence of constant velocity. They still are very much dependent

on the Reynolds number

Re= =106 re (2)

where U. represents the face velocity, 1 the length of the profile,

v the kinematic viscosity. For the sake of simplification, the

Reynolds number re, reduced by 10 6, is introduced.

With smaller Reynolds numbers there generally still exists

a laminar boundary layer if there is a small drop in velocity,

that is, the angle of incidence has exceeded that of constant

velocity. In that case, the laminar dip is larger than indicated

by the angle of incidence data with constant velocities. With

large Reynolds numbers, the opposite is true; a transition often

occurs if a slight rise in velocity is in evidence. Then, the

laminar dip is smaller than indicated by the respective constant

velocity.

As a matter of principle, we designate as laminar dip that

angle of incidence or cA region in which the theoretical velocity

distribution on upper and lower surface has larger stretches of

nondecreasing velocity simultaneously; in the noted example, it

extends from a = 3.50 to a = 8.50, or from cA = 0.42 to cA = 1.02.

In this case we set n Z 1 in order to make possible an exact

comparison with NACA profiles in hand for which n > 1 has also

been used. The symmetrical NACA profile 663- 0.18 has laminar

lengths up to x = 0.6 on both surfaces and a laminar dip of

cA = -0.3. It has, therefore, a laminar dip which is exactly as

wide as that of the profile in Fig. 2, but the laminar lengths are
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not as long, and it has considerably greater thickness, amounting

to 18%. If it were cambered in such a manner that the center of

the dip, also frequently referred to as design cA or cAi, were as

high as that of the profile in Fig. 2, then the result would also

be, aside from the disadvantage of greater thickness and shorter

laminar lengths, one of inexact constant velocity in borderline

cases. The advantage of the new method can be traced back

primarily to the fact that the leading edge was exactly calculated,

thereby eliminating any unnecessary effect of stagnation.

Even more distinct is the comparison with the method of

E. Truckenbrodt [3]. In this instance we will not present the

example given by Truckenbrodt himself, in which an airfoil has

constant velocity on both sides at the same angle of incidence

and has a thickness of 12%. According to the new method, a

problem of this sort would result in a disappearing thickness.

A different profile, calculated by F.X. Wortmann [51, has a

laminar dip of cA = 0.63 to cA = 1.13 and a thickness of 15%.

The section of velocity drop extends on the upper surface to

about 40% and on the lower surface approximately to the trailing

edge. The same problem was solved by the profile in Fig. 3 which

has a thickness of only 9%. For the minor thickness of this

profile, the velocity drop required by Wortmann is already too

great. In the vicinity of the trailing edge there occur, in

consequence, negative profile thicknesses or an overlapping of

upper and lower surface, a fact that was already evident prior to

the calculation, from the closing components both pointing upward. /250

If a profile is desired that has a thickness of 15%, as that of

Wortmann, then a considerably larger laminar dip can be selected.

A profile is shown in Fig. 4 which exhibits stretches without

velocity diop that are equally as long as those of Wortmann's and

a thickness that is equivalent to his. In order to obtain this

thickness, which is greater in comparison with the preceding

profile, a considerably larger laminar dip than that of Wortmann
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can be selected. It

740 ranges from cA = 0.46 to

CA = 1.3 and is, there-

32 fore, 70% larger than

/,o t the one of Wortmann.

0,8 ,This increase too can be
/75O traced back to an exact

Oj/ calculation of the

leading edge.

n ,2 0,4 . , 0,8 ,0
SA comparison with

the findings of Lighthill
Fig. 3. Profile in accordance with
FX 049-915 of Wortmann-Truckenbrodt. can be dispensed with. If

equally simple assumptions

, I a=09are used for velocity

- U 10-°  distributions, the same

1,6- 70 profiles are obtained

except for quite insig-

rnificant differences. The

advantages of Lighthill's

method consist in a

-reduced calculating effort

and in the many possibili-
ties of assumed velocities.

o 4o o, o , 8 
0 02 4 6 3. Theory of Boundary

Layers, Method of

Fig. 4. Profile STF 494-915. Calculation

The known methods for

calculating boundary layers also left much to be desired with

respect to their application to profile theory. The most satis-

factory results were obtained by one-parameter methods, based in

the well-known manner on the theorem of momentum and the conserva-

tion of energy. They had the disadvantage, however, of covering

by means of the respective solution method only one type of

9



boundary layer Claminar or turbulent, with or without sucking

away of the boundary layer [6, 7, 8]). It was first E. Trucken-

brodt who calculated laminar and turbulent boundary layers by

means of approximately the same solution method [9]. This method,

which was also used by F.X. Wortmann [5], was, however, not

accurate enough for turbulent boundary layers with greater pressure

rise, due to the fact that some purely mathematical simplifications

have too great an effect. H. Schlichting and W. Pechau [10]

extended the range of the procedure so that the case with suction

was included.

In September 1958, at the Third European Aeronautics Conven-

tion in Brussels, a paper was read on the calculating method for

the case without suction [11]. A detailed publication on a

calculation of boundary layers with suction is in preparation.

We will, therefore, refer here only to attainable results. The

calculating effort for the method that had originally been pre-

pared for manually operated calculators is comparable with that

of the simplest method. The method is well suited for programming

on digital computers, so that large-scale calculations can be

carried out.

In the following, all lengths of profile length 1 (x, y,

momentum loss thickness, energy loss thickness) and all velocities

with U. have been made dimensionless.

For a given velocity distrubtion U(x) and a Reynolds number

in accordance with (2), we now calculate the momentum loss thick-

ness in the boundary layer for velocity u(x,y), as follows:

u (x, u (x, y)0 (x) u (x) L U (x)l (3)
0

and the energy thickness form parameter as follows:

1(4)
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where the thickness of energy loss is defined analogous to (3) by

f= uti (u dy (5)
0

Form parameter H offers indications for the burbling ten-

dency of the boundary layer. The greater H, the farther we are

away from burbling. By and large, the data compiled in Table 1

hold true.

TABLE 1. VALUES OF H IN VARIOUS SPECIAL CASES.

Boundary layer Laminar Turbulent

Asymptotic suction 1.6667
Stagnation point 1.6171
Flat plate 1.568 1.71 to 1.75
Burbling 1.5184 1.46 to 1.58

The values for individual special cases in the boundary layer

are unequivocal on account of simpler conditions and a basic one-

parameter character, whereas for the turbulent boundary layer they

depend on the Reynolds number. A special uncertainty resides in

the turbulent separation, with which we will deal in detail later.

Possibly at the trailing edge of a flat plate or a profile,

at the conclusion of a boundary layer calculation, the amount of

drag can be calculated by means of the thickness of momentum loss

and the form parameter in accordance with Squire-Young, in the

following manner:

if U1 is the velocity at the end (made dimensionless with U.) and

H the form parameter H = 6*/0, which has been assumed as unequivo-

cally dependent on H for the laminar as well as for the turbulent

11



case. The so-called displacement thickness .6* of the boundary /251

layer is defined by

- .y (7)
0

Figure 5 represents a comparison between the new theory and

computations by Truckenbrodt and experiments by Wortmann. The

possible magnitude of the pressure rise calculated by Truckenbrodt

proved too great when checked

experimentally. There appeared
0 1phenomena of burbling that can

4o0~ a be traced back to an increase
3- i Eppt ler in thickness of momentum loss

2 ,-0 Experiment
2 ortmann that had not been ade.quately

- - - - Rechnung1 0Truckenbrodt dealt with. The plotted

0, 6, 0,9 X I boundary layer thicknesses

measured by Wortmann are in

Fig. 5. Boundary layer theory, accordance with the velocity
calculation of example and com-

curve of Fig. 5. Whereas theparison with experiment.
values calculated by means of

Key: a. Calculation the new method show good

approximation to the experiments, the theoretical values of Trucken-

brodt are considerably lower.

Figure 6 shows several experimental velocity distributions

where separation had occurred as well as the form parameter values

that had been calculated for them. Predicting the location of

a separation is still one of the specially difficult features of

calculating turbulent boundary layers. All three of the velocity

distributions that were used resulted in a separation of the

turbulent boundary layer. Theoretically, this separation is

determined by a drop of the form parameter below a certain value

at which the wAll shear stress practically vanishes. While the

assumption to date had been that the turbulent boundary layer

12



0 
J

Si would not adhere until the

H I lawall shear stress vanishes,

on calculating the experi-

/ ments subsequently, it was

found that the limit for

4 S- \t a separation is nearly reached.

Lately, attention has been

7,2 called to the effect of

dead water [12]. According

1,0 to this view, a connection

\ between the tendency of the

s 2 , 6 boundary layer to adhere
' 42 0,4 0,6 Ie 1,0

longer to the airfoil and
Fig. 6. Recalculation of separated smaller values of the separa-
experimental boundary layers.

tion parameter sound quite
Key: a. Latest separation plausible; this tendency

is evident in Fig. 6. It

can be assumed that the beginning of turbulent separation, unless

it happens quite suddenly, occurs at relatively low form parameter

values. For the time being, it is not possible to apply more than

this rough criterion. However, it already allows us to fix

velocity distributions in such a manner that a turbulent separation

can be avoided with certainty.

4. The Mathematical Model

By means of the noted methods of calculation for the theory

of boundary layers and airplane wings, it is possible not only

to design profiles with specified characteristics of pressure

distribution, but also to compute subsequently many data for the

resulting profiles that had hitherto been determined only in

the wind tunnel. Thispertains mainly to boundary layer data,

instability of the laminar boundary layer, and drag at different

angles of incidence and Reynolds numbers. It is thus possible to

calculate complete polar diagrams, to compare the results of

different profiles with each other and -- Just as by means of

13



wind tunnel tests -- select from systematically modified series

of profiles those that are best suited for a certain purpose.

However, it is necessary always to keep in mind that all

comparisons are only on the basis of a purely mathematical con-

trivance consisting of formulas, that has lately been designated

as a "mathematical model" of certain natural events. The mathe-

matical model, no more than a "model test," possibly in a wind

tunnel, cannot cover everything that takes place during the use

of an airfoil on an airplane. Whereas, for instance, the mathe-

matical model does not account for three-dimensional events, in

the wind tunnel there also occur secondary currents other than

at the airplane wing. Neither wind tunnel results nor theoretical

findings are likely to be blindly applied to an airplane wing;

however, it should be possible to draw certain conclusions for

actual wings from experiments as well as from theoretical com-

parisons.

The fact that lately mathematical models are again moving

more into the foreground is connected with the possibilities

presented by digital computers that permit the use of a founda-

tion of more complicated and more reliable systems of formulas.

In addition, the application of the mathematical model is frequently

cheaper than the experiment. The latter fact counts for much,

especially for the combined application of boundary layer and /252

profile theory under discussion here.

In the following, we will demonstrate how the noted mathe-

matical model can be applied. No comparisons with nature have yet

been drawn, although only by their use can the usefulness of the

model be proven and possibly an improvement in the formula setup

be found. Our aim, first of all, is to explain the range of the

formula setup by means of some examples and to show the possi-

bilities that offer themselves if the road that we have taken

continues to be practicable.
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5. Applications

5J.1. Optimal Form of Eressure Rise in Turbulent Boundary Layer

Whereas we know with certainty that in the laminar boundary

layer the greatest possible pressure rise is attained if the

borderline of burbling is approached as close as possible with

the form parameter, we are by no means as certain with regard:

to the turbulent boundary layer. However, even there some infor-

mation can be expected regarding the still possible pressure

rises if the tendency to separation or the form parameter value is

kept constant. These boundary layers, which erroneously have often

been designated, just as in the laminar case, as "similar boundary

layers," have been obtained with relative ease by means of the

present programs for profile calculations by varying the velocity

drop during step-by-step integration until the form parameter

remained constant. Some of the results are presented in the

following graphs. In accordance with the given form parameter

values, basically different patterns of velocity, beginning with

U = 1, will naturally result.

_10___0 In Fig. 7, starting at

U ii , a thickness of momentum loss
1 1,62 016 of 0o = 0.0003, the course

00 154 5 taken by U(x) and 8(x) has

Sbeen shown for different

1019 70 form parameter values. The0o o0 0 ,s x o 1,7 Reynolds number, set at

Fig. 7. Similar turbulent boundary re = 1, was derived from the
layers. initial velocity and the unit

of length. The relatively

small velocity drop depicted results from H = 1.7. A small decrease

in the form parameter in the direction of burbling results in a

considerably greater velocity drop with H = 1.66. The fact is

remarkable that a further decrease in form parameter, which would

15



not reach the borderline of separation before H = 1.46, does not

result in any considerable increase in the possible drop in

velocity.

Due to the fact that in Fig. 7 the curves lie very close

together, the course taken by the final value U1 and 61 at x = 1

plotted against form parameter H is at the right-hand side of the

figure. Especially conspicuous is the fact that the lowest final

velocity value is not reached when approaching quite close to the

burbling point, but considerably sooner, at about H = 1.58. This

finding has been established throughout all calculations of similar

boundary layers.

The velocity curve exhibits the familiar picture that at

first the velocity drop is large, but subsequently gets smaller

and smaller. The thicker the boundary layer, the less it can

tolerate a velocity drop without a separation occurring.

1,5 This is also clearly

u =,74 V, visible in Fig. 8, where the
102 ~~U " 019,U,

same calculation for the

1, 70 same Reynolds number with

----166 16 a different initial value

S1,54_6- of momentum loss thickness,

, 50+158- ,66 00 = 0.0005, has been pre-

t0 sented. The velocity drop

50 6 that can be attained, which
So5 ,o 1,5 t 1,7 5 1,0

is shown to the right in

Fig. 8. Similar turbulent boundary the figure, is in this case
layers. considerably smaller than

in the preceding example.

It should be noted that the maximum velocity gradient was again

reached at approximately H = 1.58.
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U - U, ,Of interest, further-
o 2 , 15o 10/ m'ore, i the effec of a

S- 1,5i,5 ,62 \ change in the Reynolds

1, 70 number. In Fig. 9, as in

00 0,50 Fig. 7, the thickness of

,5 5 16 8 the momentum loss is o =

Fig. 9. Similar turbulent boundary = 0.0003, but it is based
layers. on four times the Reynolds

number, re = 4. With an

increasing Re number, a higher possible velocity gradient is

expected. Oddly enough, this does not happen if the initial value

6 is maintained. There is, rather, practically the same value of

the lowest final velocity as in Fig. 7. The form parameter value /253

that results in the largest velocity gradient is insignificantly

smaller than before. In this case ,also, the attainable velocity

drop is not as great when approaching close to the border where

separation takes place than it is shortly before that line is

reached.

The question is important why there is here no confirmation

of the generally known tendency of larger possibile velocity

gradients with larger Reynolds numbers. This is due to the fact

that the initial value of the momentum loss thickness has been

kept constant. There are generally smaller momentum loss thick-

nesses for a high Reynolds number. Consequently, the momentum

loss thickness that was kept constant signifies that relatively

higher initial momentum loss thicknesses had been selected for

higher Reynolds numbers.

In order to study more in detail the phenomenon that the

possible velocity gradient changes little with the Reynolds number

at a constant initial value of the momentum loss thickness, a large

number of similar boundary layers, each with the form parameter

H = 1.58, which leads approximately to the maximum velocity

17



S -- gradient, were calculated

-lo all the way through. In

Fig. 10 are plotted the

,o5s resultant curves of velocity

0- and momentum loss thickness

8 for an initial value of
re 2 16

q e- 0 = 0.0001 and six

Reynolds numbers of re =

, 2 - = 0.5 to 16.

Whereas the lines for
o o,2 0 0,6 ,8 o the momentum loss thickness

Fig. 10. Borderline case of similar stand out clearly, it was

boundary layers. not possible to plot all

the lines for the velocity

distribution, as they are located too close together.

Although, in principle, it would be possible to calculate the

similar boundary layer and the possible velocity gradient for each

combination of initial values, the already acquired relationship

is adequate for a good assessment of possibilities. Wherever the

momentum loss thickness eo determines practically all by itself

the possible course taken by velocity, then it is possible to

find readily in Fig. 10 the initial value of the momentum loss

thickness at the respective Reynolds number and, on the basis of

the corresponding values of x0 and Uo, to locate immediately the

possible further course of velocity. It must of course be pro-

portionally extended to the respective value of the velocity of

the problem, taking into account the change of Reynolds number.'

Even a further simplification is justified. It is not even

necessary to consider the different course taken by the momentum

loss thickness at different Reynolds numbers, but it is possible

to pick out a single one of these lines, possibly the one with
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re = 4. If now, for an initial value of eo which belongs to a

different Reynolds number, xo is located by means of this picked-

out line, then a considerable error results for U . However, if

the adjacent velocity curve is distorted to the given initial

value of velocity, the error is corrected to a large degree.

If the following exponential law were to hold true for the

velocity curves

U = Ae- Bx or Ut/U = const

then the correction would be complete. In an actual case, U'/U

would decrease, but not to the extent that the restriction to a

single 0 line would result in an important error. Figure 11 depicts

the same diagram as Fig. 10, but for a greater initial value of the

momentum loss thickness of

e = 0.0005. Here, the

0 1 lines of velocity already

differ more but are still

close enough together. The

2 errors that can be made by

a restriction to a single

, 6// line also lie in the

- - order of magnitude of this

0-2 -difference. Until now, it

has been possible to put up

0 0with it without difficulties.

x In each case, it would be

Fig. 11. Borderline case of similar possible to arrive at more
boundary layers. exact values from the

diagram in Fig. 10 by taking into account the Reynolds numbers

when locating the initial value of 0.

The start of the turbulent boundary layer is usually connected

with a small boundary layer thickness. In order to facilitate the

locating of corresponding e and U values, the beginning of the
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O / diagram in Fig. 12 has

SIOU re-0,5- been enlarged. There,

8 a line U'/U has also

been plotted. This

quantity is used to

special advantage in

the profile theory

during introduction of

velocity distribution.

0°o ,2 O. ,06 0o8 oo ,1 The diagrams as /254

shown offer a simple
Fig. 12. Borderline case of similar
boundary layers, enlarged represen- method for finding
tation of initial region. velocity distributions

for given initial thick-

nesses of momentum loss

U :that are liable to result
a b c in a constant form param-

eter and certainly not

in a turbulent separation.

However, it is still com-

pletely unclear whether

these represent the most

Fig. 13. Comparable forms of favorable course that
velocity drop.

velocities can take,

especially in view of an

application for airfoils. It might be possible that forms of

pressure rise in which the form parameter approaches the border-

line of separation only gradully would permit a greater pressure

rise. In addition, it is necessary to investigate which points

of view become decisive; it is not only of importance that there

is no separation at the profile, but also to attain minimum drag

at these conditions. We cannot, therefore, avoid investigating,
by using concrete examples of airfoils, the effect of different
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courses taken by velocity. It will be possible to. use data

gained from 'similar" .solutions as points of reference and,

above all, to draw on adjacent forms for comparison. The boundary

layer theory by itself, however, will not be adequate for reaching

a decision.

A comparison of different shapes is carried out on the upper

surface of profiles that are in accordance with the problem of

the simple laminar airfoil. The original profile is shown in

Fig. 14b. Its laminar dip extends from a = 4.50 to a = 13.20,

i.e., approximately from cA = 0.5 to cA = 1.45. The laminar

lengths on -the upper surface are xlo = 0.34, on the lower surface,

Xlu = 0.8. The form of the velocity drop on the upper surface was

arrived at by first calculating (on another profile, on which

all data were the same, but the velocity drop had been estimated)

the momentum loss thickness eo at the beginning of the pressure

rise for re = 1 and a = 13.20. Subsequently, from Figs. 11 and 12,

the velocity distribution was determined that exactly corresponded

to the conditions of greatest velocity drop at constant form

parameter that prevailed there. The profile depicted in Fig. 14b

was calculated by means of this form. A calculation based on

the boundary layer theory showed that during conversion from

estimated to final form of the velocity rise, the quantity e0
remained intact accurately enough and that the form parameter in /255
the pressure rise region yielded the assumed values.

In order to study the significance in the profile theory of

a form of velocity determined in this manner, it is possible to

calculate "neighboring" profiles which, however, must be

selected with some caution. To begin with, it might be con-
sidered, possibly in accordance with Fig. 13a, to leave unchanged
the beginning of the pressure rise and its total height and to vary
the steepness at the beginning. While this does supply some

information, it does not as yet represent the correct method for
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Scomparisons. In comparing

S 1.2- - such profiles with each

1,6 -[ "' other, the following is

tj'erseite observed:

1. The too-steep

pressure rise quickly results

0,4 150 in separations. This is

not a foregone conclusion,
b 2,2 due to the fact that the

1 -- value of the form parameter

S g 9 o at the beginning is still a

long way from separation.

4W.5iS However, its initial value

has little effect compared
1 3,2to that of momentum loss

0, - thickness.

0 -
c -- 2. The too-flat pressure

2,0 - rise does not as yet result
l 13,20-

1 o- in separation and also yields

the same value of momentum

1,2 45 loss thickness at the end of

0,6 -0 - the pressure rise. There-

132- fore, if at the beginning

0,4 of the pressure rise the

steepness that is possible

0o 02 o o,6 o,e 1,0 is not fully utilized, no

Fig. 14. Three comparison profiles disadvantage results with
with equally full trailing edge and respect to the boundary
equal laminar dip limits.

layer theory.
Key: a. Velocity drop initially

steeper than in borderline
case of similar boundary 3. The profile with the
layers

[Key continued on following page.] pressure rise that is initially
steeper has a considerably
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Key to Fig. 14, cont'd:

b. Equally steep
c. Flatter
d. Upper surface
e. Lower surface

more pointed trailing edge; the one that is initially flatter has a

considerably fuller trailing edge. This results from the fact that

the share contributed by a velocity drop to the closure of the

profile is calculated by means of an integral (compare [5]).

The fact noted under point 3 condemned the comparison as it

had been carried out. The differently full trailing edges require

differently large closing components in the distribution of

pressure. They, in turn, occasion differently large separations

in the vicinity of the trailing edge, the effect of which on drag

is not covered in the theory of boundary layers. Although such

separations occur in practice on all profiles, a reliable com-

parison within the framework of the theories presented here is

obtained only if the trailing edges have the same fullness in each

case or if the closing components in the distribution of pressure

are equally large.

The example that we have discussed shows that the theory of

boundary layers would permit without drawback a pressure rise for

which the initially possible pressure rise has not been fully

utilized, but that in this case disadvantages with regard to the

theory of profiles would occur. Since the tendency is to resort

to flatter pressure rises on account of the laminar bubbles during
burbling that occur at the beginning of the pressure rise in pro-

portion to its steepness, it is important to assess the magnitude
of the disadvantages connected with it. For this reason, the
temptation is to carry out the comparison in the manner shown in

Fig. 13b by again keeping the total height of the pressure rise
constant and starting with the initially flatter pressure rise
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sooner, by so much that the closing components will remain un-
changed, while the initially steeper one is begun correspondingly
later. However, this type of comparison is not conclusive either.
An earlier beginning of pressure rise requires a smaller value of
6 ; according to Figs. 10 and 12, the total height of the pressure
rise can be greater if in each case the form of rise as determined

there is chosen. Since we always wish to compare with this form,

we must base the calculation of the comparison profiles on the

principle sketched out in Fig. 13c. In this case also the

initially less steep pressure rise is used sooner; however, its
total height is fixed higher corresponding to the smaller e ; the

reverse holds true for the initially very steep pressure rise.

This results in the displacement of the beginning of pressure

rise not being as great as that of the comparison principle of
Fig. 13b.

Some preliminary calculations with estimated eo values were
still necessary for determining 0o in order to arrive at a final
determination of the comparison profiles depicted in Figs. 14 a
and c. The depicted comparison profiles meet all requirements.

Especially the limits of laminar dips, the beginning of pressure
rise at the lower surface and the fullness of the trailing edge
are exactly the same. The size of the pressure drop at the upper
surface is determined for the 0o values at re = 1 and a = 13.20
from Figs. 11 and 12; only the initial steepness in the case of c
is smaller, and in the case of a, it is bigger than would have
resulted from the diagrams.

A large number of calculations for boundary layers and drag
has been made for these three profiles. A selection of typical
findings is presented in Fig. 15. Of greatest interest,4 first
of all, is naturally the angle of incidence a = 13.20 -- or in
accordance with (1), the coefficient of lift cA = 1.45 -- at re = 1;
this is the case on which the comparison was built. It is evident
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b -- that in this case profile

--- re-O5 c b is the most favorable.
-C - , Profile c, as expected, has

1,2- / - no greater separations than

b, due to laminar lengths

that are shorter for purely

theoretical reasonsregard-

0- - ing the profile, but it

possesses somewhat more drag.

o Profile a exhibits premature0 o, 0,8 12 ,6 2,0 2,21oocw separation. It even occurs

Fig. 15. Calculated polar curves very suddenly. In any case,
of comparison profiles of Fig. 14.

for this reason a too-steep

velocity drop must be avoided.

The flatter velocity drop entails the advantage, as against the

somewhat greater amount of drag, of effecting a very slow separa-

tion from the direction of the trailing edge. This is indicated

in Fig. 15 by the fact that the polar curve still shows some upward

slope at the onset of separation in the vicinity of cA = 1.45, that

the increase in drag is, therefore, still connected with an increase

in lift.

For the comparison of profiles, calculations of drag at other

Reynolds numbers will also be used, as these vary anyway for the /256

wing and for individual flight conditions. A reduction of the

Reynolds number to re = 0.5 shows the same picture at the lower

part of the polar curve. On this occasion, where the rise in

pressure has anyway not been fully utilized, the too-steep pressure

rise results in the smallest amount of drag. However, separation

occurs here still sooner and still more suddenly. At the profile,

which is exactly right for re = 1, at the smaller Reynolds number,

separation also occurs too soon and too suddenly. At a flatter

pressure rise, separation also occurs already before reaching the

limiting angle of incidence for which the calculation takes place.

However, it is still very weak and progresses only slowly.
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At an increased Reynolds number the profile with the too-steep

pressure rise exhibits no separation up to the limiting angle of

incidence; shortly thereafter, however, it occurs again rather

suddenly. The two other profiles, with almost no exception,

exhibit more drag but a better behavior relative to separation.

All in all, the conclusion can be drawn from Fig. 15 that we

come close to the optimum if the form of velocity drop is taken

from the diagram of similar boundary layers for the one respec-

tively selected. However, attention will always have to be paid

to keeping the initial steepness of the velocity drop small enough,

because in that way the separation attitude is improved. Another

reason for a less steep velocity drop, especially at smaller Reynolds

numbers, is to be found in the occurrence of laminar bubbles

during burbling.

From the preceding examples it is evident that the velocity

curves derived from the "similar" solutions for the turbulent

boundary layer come very close to the drag minimum that can be

attained. It is true that adjacent curves with smaller initial

gradients are better from the standpoint of boundary layer theory,

but they exhibit disadvantages from the standpoint of profile

theory. There are simple diagrams for obtaining an individual

course. The decision will have to be made in each individual

case whether a more harmless separation attitude and a more

advantageous change in boundary layer should be attained at the

expense of drag.

5.2. Distribution of Laminar and Turbulent Sections on Upper
and Lower Surface

Soon after the first development of laminar profiles, it

became evident that the distribution of laminar sections on the

upper and the lower surface has a considerable effect on the

moment coefficient of the ensuing airfoil problems.

26



F.X. Wortmann [2] determined in addition that the drag

coefficient is also affected by it. However, when assessing his

findings, it must be noted that the selected approximations play

an appreciable role both in the boundary layer theory and in the

profile theory. Above all, in Wortmann's method of approximation

for calculating the profile at the trailing edge of the upper and

lower surface, the velocity is not the same. In any case, the

equalization of pressure that always exists in an actual case

seems to take effect to a greater extent than originally anticipated.

When comparing profiles that have different laminat lengths

on upper and lower surface, care must be taken that the trailing

edge is equally full in each case and, in addition, see to it that

the velocity drop depends on the momentum loss thickness at the

transition point.

A simple laminar profile is again chosen to serve as a problem

on which to carry out the comparison. The laminar dip extends

from a = 4.50 to a = 13.20. The length xlu of constant velocity

on the lower surface is varied, starting from very small values

around 0.05 to close to the trailing edge at 0.95. The momentum

loss thickness 0o at the transition point on the lower surface is

calculated in each case for re = 1.71 and subsequently the form

of the pressure rise is determined in accordance with Figs. 10

and 12. On the upper surface, as a matter of principle, the

boundary layer thickness at the transition point is also calculated

for the selected starting length xlu, but for an a = 13.20 and a

smaller Reynolds number, namely, re = 1; then we proceed the same

way as on the lower surface. The different Reynolds numbers are

due to the fact that on an airplane the higher lift coefficient

is reached at a lower speed. For a given laminar length on the

lower surface,the one on the upper surface is found by the

requirement for having the same overall fullness at the trailing

edge. In order to meet all of these requirements, iterations were
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occasionally necessary when profiles resulted that were based on

an initially estimated momentum loss thickness at the transition

point, and where the subsequently calculated momentum loss thick-

ness turned out to be different from the estimated one. However,

it was possible largely to avoid iterations by means of skillful

interpolations.

The series of profiles that came into being under the noted

conditions are shown in Fig. 16. This series exhibits some

surprising features. Generally, the expectation would be that for

the same fullness of trailing edge, a longer laminar section xlu
on the lower surface would demand a shorter xlo on the upper

surface. On the whole, this tendency is exhibited by the series;

however, at the beginning, it is seen that increases ofxxlu from

0.01 to 0.1 do not entail any reduction of xlo. Also to be observed

in the region of very large xlu is a heavy drop of xlo. Conse-

quently, it does not look like a good policy to demand laminar

sections on the lower surface that are too long, as it is only

possible to obtain them by means of a greater shortening on

the upper surface. This shows that a relatively short region of

declining velocity Already contributes much to the closing of

the profile, a fact that can also be substantiated by means of

the profile theory.

For this profile series we also carried out a very large number

of boundary layer and drag calculations. Part of the findings are

depicted in Fig. 17. First of all, we want to mention the dependence

of a possible laminar length on the upper surface on that of the

lower surface. In addition, the moment coefficient cMo for it

has been plotted at zero lift, which of course is very largei:'for

extreme profiles of higher camber and which decreases with increas-

ing laminar length on the lower surface. In addition, the thickness

of the resulting profiles is noted, profiles which reach their

maximum where xlu is slightly larger than x1lo. However, essential
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for selecting the most
1,6 0,8 --

Xo favorable profile are
100lc d

-C0 the drag coefficients.

In this instance, we

W specified the two charac- /257
0.- 0,4 -teristic values, namely,

-W the drag coefficient Cw2
, d M at the large angle of

incidence a = 13.20 and

0 00 02 o, o,6 08 i o the small Reynolds number

re = i, and additionally
Fig. 17. Characteristic quantities
of profile series of Fig. 16. that of Cwl at the small

angle of incidence a = /258

= 4.50 and the large Reynolds number re = 1.71. It turns out that

the value of Cwl hardly changes at all. In contrast, cw2 increases

with increasing laminar length on the lower surface. This result

is contrary to Wortmann's conception. He allots considerable

advantage to the extreme cases of long starting distance on lower

and upper surface. In this instance, we find that in extreme cases

the loss of closure component in accordance with profile theory

that had not been determined exactly by Wortmann, exceeded the

gain in accordance with boundary layer theory. With large lift

coefficients, that is, high average flow velocities on the upper

surface, allengthening of the laminar boundary layer on the upper

surface has a greater effect than the corresponding shortening on

the lower surface. With small coefficients of lift, however, it

does not matter how the laminar lengths are distributed. In that

case, the profiles where the laminar length is approximately

equal on upper and lower surface are superior on account of their

greater thickness.

Consequently, if the interest is along the lines of little

drag at a small amount of lift, the choice of profile will be in

the direction of the small cM values, whereas in those cases where

drag coefficients that are still favorable at high coefficients
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of drag are to be attained, the larger cMo will have to be put

up with.

5.3. Limited Moment Coefficient

For structural reasons, in many cases the demand is made on

the airfoil that the moment coefficient must be limited. As can

readily be seen in Fig. 17, this restricts the choice of a profile

to a considerable extent. In case the moment coefficient must be

kept small, profiles with long laminar sections on the upper

surface are out of the question. Consequently, small drag coef-

ficients with large lift coefficients are also out of reach. Fur-

thermore, the fact must be recognized that it is basically not

possible to attain arbitrarily small moment coefficients for

given limits of laminar dips if we are unwilling to put up with

boundary layer separations. For instance, a profile with fixed

aerodynamic center with vanishing moment coefficient cMo cannot

be attained with the limits for laminar dips that have been assumed

for the profile series noted. For this, the laminar dip must be

moved downward. This results in a reduction of maximum lift. Since,

in addition, small moment coefficients at the lower surface always

require longer laminar distances than on the upper surface, which

increases drag at larger coefficients of lift, it can in general be

established that placing a limit on the coefficient of drag will

result in a considerable restriction of attainable profile charac-

teristics at large coefficients of lift. For flying-wing aircraft,

the attainable maximum lift is, therefore, generally within bounds;

for other planes, where the limiting of a moment coefficient is

necessary for reasons of physical properties and danger of flutter,

it will be advisable to use flaps for the purpose of increasing

maximum lift. More exact calculation of the possible borderline

cases is extensive for the general case due to the fact that

the respective Reynolds number also enters into it. However, it

is easily possible to determine the attainable values from case

to case.
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-.4. Profiles with Strong Maximum Lift

Although, especially with respect to maximum lift, calcula-

tion of the boundary layer cannot as yet furnish any exact

information, a consideration of some general characteristics of

boundary layer distribution will result in a certain delimiting

of possibilities to attain strong lift. Besides the method of

deciding on an upper limit to the laminar dip that is so high that

large enough coefficients of lift can already be obtained below it,

there is still another possibility that F.X. Wortmann [2] has

already pointed out. If we manage to select the laminar'l.length

Xlo on the upper surface so large that there remains only a short

region of pressure rise following maximum velocity, then above

the laminar dip the distribution of velocity is such that even

with a transition occurring at the leading edge, there is no

danger of turbulent separation over a large range of angles of

indidence at any great distance from the trailing edge.

An example of such a profile is the one already shown in

Fig. 2. The velocity distribution has been plotted there for two

angles of incidence above the laminar dip. It can easily be

calculated that even for the larger of the two values, a separa-

tion of the turbulent boundary layer occurs only a short distance

ahead of the trailing edge. The laminar dip in this case extends

only over a relatively small area; however, frequently such an

area is entirely adequate, especially in the case of airplanes

with small aspect ratio. In those cases the induced drag at

higher coefficients of lift is anyway many times as great as the

parasitic drag. It is true that in the profile noted the

leading edge is quite pointed, so that outside of the laminar

dip high velocity peaks set in quickly, which will then, in turn,

lead to separation.

Figure 18 depicts another design of a profile. In this case,

the laminar dip that was selected is even smaller, which is

32



frequently adequate for

practical problems. Con-

320 sequently, it was possible

to introduce an additional

5 -  section of constant velocity

on the upper surface at a

high angle of incidence.

0, This increases the thick-

~-~-n--- ness of the profile and,
1320

S0,4 -__- above all, makes the

leading edge considerably

0 fuller than would be in
o ,2 0o 46 0,8 O

conformity with the small

Fig. 18. Profile STE 971-514 with laminar dip; the high
small laminar dip and strong
maximum lift. collecting points at the

leading edge are avoided.

In addition, this type of

profile, in contrast to the

- customary laminar airfoils,
allows for still larger

2 . laminar distances. There-

,--- -/ -fore, the gain derived from
- a reduction in the size of

the laminar dip results, on

0 -STE871-514 the one hand, in higher lift
-- STF863-65 coefficients; on the other

0 2 2 hand, in longer laminar /25904 0,8 1,2 16 ,
sections. The calculations

Fig. 19. Calculated polar curves of drag for the last two
of profiles STF 863-615 and STE profiles have been plotted
9 71-514. in Fig. 19. Even for the

specified velocity dis-

tribution at the high angle of incidence of 12.50, the danger of

separation on the upper surface is a long way off. The fuller nose
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resulted in a greater maximum lift and the longer laminar sections

brought about reduced drag within the laminar dip; its width,

however, has become smaller. These possibilities, too, since

they are based on the assumption of long laminar sections on the

upper surface, cannot be attained with small moment coefficients.

Nevertheless, it will pay to include such profile types in design

considerations of many problems, especially when modern types of

construction with plastic materials c6me into being.

6. Results to Date

Although theory was meant to be in the foreground of the

present study, we will give a brief account of the practical

results that we have achieved so far. The first application of

an airfoil, somewhat similar to that in Fig. 1, was in the

FS 24 Ph6nix sailplane, prior to the time that any wind tunnel

data were available. The wind tunnel tests subsequently carried

out [13] and the actual results [14] were decidedly gratifying.

This initial success was followed by several calculations

of profiles that were primarily meant for wind tunnel experiments

and where an attempt was made to determine an optimal pressure

rise by means of older boundary layer methods. The corresponding

measurements, which also caused certain difficulties in the wind

tunnel itself, demonstrated that the theoretical fundamentals of

boundary layers urgently needed improving [15, 16]. It is not

possible at present to report on the measurements or the practical

application ofoprofiles that have been calculated by means of the

new boundary layer calculation method. However, the control

experiments are being prepared. If they turn,)out positive, then

not only single profiles but an entire methodology for the cal-

culation of profiles will have been obtained, the value of which

will far exceed that of an airfoil catalog.
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7 Appendix: Coordinates of Several Proffles

TABLE 1. PROFILE STE 87(-3)-914 (Fig. 1).

100 x 100 y 100 x 100 y 100 x 100 y

100,000 0,000 29,582 11,019 16,989 - 3,569
99,635 0,122 25,240 10,632 21,083 - 3,584
98,596 0,518 21,155 10,133 25,556 - 3,521
97,007 1,202 17,373 9,523 30,345 - 3,396
94,983 2,120 13,941 8,796 35,385 - 3,224
92,596 3,185 10,881 7,929 40,608 - 3,012
89,867 4,319 8,174 6,926 45,946 - 2,767
86,819 5,486 5,817 5,833 51,328 - 2,490
83,514 6,637 3,830 4,697 56,682 - 2,180
79,969 7,667 2,235 3,556 61,936 - 1,828
76,127 8,535 1,048 2,452 67,016 - 1,393
71,984 9,283 0,292 1,436 71,940 - 0,806
67,594 9,926 0,000 0,586 76,798 - 0,133
63,003 10,462 0,333 - 0,110 81,551 0,448
58,264 10,890 1,322 - 0,774 86,049 0,835
53,427 11,204 2,834 - 1,439 90,145 0,986
48,543 11,402 4,827 - 2,071 93,671 0,892
43,665 11,483 7,262 - 2,639 96,468 0,625
38,844 11,446 10,104 - 3,112 98,449 0,317
34,133 11,291 13,333 - 3,431 99,616 0,086

CMo = -0.1853, o = 7.050 (direction of zero lift relative
to the x axis).

TABLE 2. PROFILE STF 863-615 (Fig. 2).

100 x 100 y 100 x 100 y 100 x 100 y

100,000 0,000 30,708 10,253 18,956 - 2,493
99,640 0,119 26,312 9,744 23,174 - 2,84798,616 0,504 22,132 9,140 27,652 - 3,14297,051 1,167 18,210 8,449 32,337 - 3,368
95,056 2,051 14,586 7,687 37,174 - 3,515
92,689 3,067 11,297 6,866 42,104 - 3,569
89,958 4,145 8,373 6,003 47,067 - 3,51286,869 5,272 5,846 5,117 52,003 - 3,321
83,491 6,453 3,738 4,229 56,841 - 2,915
79,933 7,622 2,075 3,363 61,682 - 2,171
76,226 8,632 0,873 2,551 66,716 - 1,223
72,280 9,417 0,158 1,838 71,891 - 0,34468,065 10,034 0,032 1,304 77,007 0,33863,636 10,514 0,570 0,850 81,897 0,79459,041 10,859 1,729 0,352 86,418 1,02054,327 11,073 3,437 - 0,161 90,446 1,034
49,545 11,157 5,658 - 0,672 93,861 0,868
44,743 11,112 8,359 - 1,170 96,559 0,591
39,971 10,944 11,503 - 1,646 98,481 0,299
35,276 10,655 15,050 - 2,090 99,623 0,081

CMo = - 0,1792, fo = 7,030
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TABLE 3. PROFILE STE 871-514 (Fig. 18). /260

100 x 100 y 100 x 100 y 100 x 100 y

100,000 0,000 28,155. 8,762 20,200 - 3,506

99,626 0,0)5 23,780 8,321 24,599 - 3,791

98,562 0,412 19,660 7,797 29,259 - 4,027

96,925 0,970 15,839 7,197 34,125 - 4,206

94,815 1,717 12,359 6,532 39,140 - 4,325

92,276 2,594 9,255 5,812 44,244 - 4,379

89,340 3,578 6,565 5,049 49,378 - 4,360

86,086 4,666 4,320 4,257 54,482 - 4,261

82,635 5,780 2,560 3,436 59,493 - 4,069

79,014 6,755 1,295 2,561 64,353 - 3,771

75,123 7,523 0,471 1,634 68,994 - 3,302

70,930 8,144 0,049 0,744 73,489 - 2,564

66,490 8,650 0,059 0,039 77,995 - 1,678

61,852 9,043 0,678 - 0,496 82,452 - 0,883

57,067 9,327 1,972 - 0,996 86,676 - 0,288

52,185 9,499 3,827 - 1,484 90,508 0,089

47,260 9,562 6,207 - 1,951 93,817 0,260

42,343 9,516 9,074 - 2,392 96,490 0,263

37,486 9,365 12,390 - 2,801 98,437 0,165

32,740 9,112 16,114 - 3,174 99,610 0,050

cMo = - 0,1199, flo 4,66
0
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